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Abstract. The symmetric Anderson impurity model with a hybridization vanishing at the Fermi
level, �I ∝ |ω|r , is studied via the numerical renormalization group (NRG) at T = 0; and detailed
comparison made with predictions arising from the local moment approach (LMA), a recently
developed many-body theory which is found to provide a remarkably successful description of the
problem. Results for the ‘normal’ (r = 0) impurity model are obtained as a specific case, and
likewise compared. Particular emphasis is given both to single-particle excitation dynamics, and
to the transition between the strong-coupling (SC) and local moment (LM) phases of the model.
Scaling characteristics and asymptotic behaviour of the SC/LM phase boundaries are considered.
Single-particle spectra D(ω) are investigated in some detail, for the SC phase in particular. Here,
in accordance with a recently established result, the modified spectral functions F(ω) ∝ |ω|rD(ω)

are found to contain a generalized Kondo resonance that is ubiquitously pinned at the Fermi level;
and which exhibits a characteristic low-energy Kondo scale, ωK(r), that narrows progressively
upon approach to the SC → LM transition, where it vanishes. Universal scaling of the spectra
as the transition is approached thus results. The scaling spectrum characteristic of the normal
Anderson model is recovered as a particular case, that exemplifies behaviour characteristic of the
SC phase generally, and which is captured quantitatively by the LMA. In all cases the r-dependent
scaling spectra are found to possess characteristic low-energy asymptotics, but to be dominated by
generalized Doniach–S̆unjić tails, in agreement with LMA predictions.

1. Introduction

The Anderson impurity model [1], in which a correlated spin- 1
2 impurity is coupled to, and

quenched by, the low-energy excitations of a non-interacting metallic host, has long occupied a
central role in condensed matter theory (for a comprehensive review see e.g. [2]). Its low-energy
properties—those of a conventional Fermi liquid—are of course contingent upon coupling to
a metallic host, whose density of states ρhost(ω) is non-vanishing at the Fermi level, ω = 0.
However, the ‘normal’ impurity model is itself a limiting case (r = 0) of a more general class, in
which the host spectrum contains a soft gap at the Fermi level, ρhost(ω) ∝ |ω|r with r > 0. Such
models exhibit a much wider spectrum of physical behaviour than the r = 0 limit, in particular
an underlying quantum phase transition between Fermi liquid and non-Fermi liquid states
(as discussed below). For this reason they are naturally of considerable theoretical interest,
although we note that a significant number of potential experimental candidates for soft-
gap behaviour have been suggested, including various semiconductors [3] and heavy-fermion
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superconductors [4], certain two-dimensional systems [5, 6] and quasi-one-dimensional metals
described by a Luttinger model [7].

The soft-gap problem was first considered by Withoff and Fradkin [8] in relation to the
corresponding Kondo model. Much study of both soft-gap Kondo and Anderson models has
since ensued, in particular via poor man’s scaling [8, 9], large-N expansions (with N the
impurity degeneracy) [8, 10, 11], the numerical renormalization group (NRG) [9, 12–15] and
perturbation theory in the impurity interaction strength, U [16]. From such, it is now well
established that two distinct types of ground state arise, between which in general a quantum
phase transition occurs at a critical, finite host–impurity coupling: (i) a doubly degenerate local
moment (LM) state in which the impurity spin remains unquenched; and (ii) a strong-coupling
(SC) state in which the impurity spin is locally quenched and a Kondo effect manifest, and
whose properties have been argued to represent a non-trivial but natural generalization of the
Fermi liquid behaviour ubiquitous to the normal Anderson model [15, 16]. The underlying
physics is known to be particularly rich for the particle–hole symmetric problem, to which NRG
studies in particular have devoted considerable attention, encompassing both thermodynamic
properties [12–15] and impurity single-particle spectra [14].

For impurity models generally, a theoretical description of dynamics, and in particular
single-particle dynamics, poses a significant challenge. Even for the normal spin- 1

2 Anderson
model, current theories such as the non-crossing approximation [17–20], 1/N expansions
[21–23] or slave-boson approaches [24–26] are well known to possess significant limitations;
whether it be an inability in practice to handle finite interaction strengths, to describe excitation
dynamics on all energy scales, or to recover low-energy spectral characteristics (Fermi liquid
behaviour, for instance, or Doniach–S̆unjić tails [27] in the ‘wings’ of the Kondo resonance).
Benchmark results are of course now accessible via NRG calculations (see e.g. [14, 28, 29]),
or by a combination of quantum Monte Carlo calculations and the maximum-entropy method
(at finite temperature) [30]. It is against such that the accuracy, qualitative or otherwise, of
extant theories—or new ones—must be assessed.

In this paper we consider the symmetric soft-gap Anderson model, including the ‘normal’
limit of r = 0. Our primary aim is to make detailed comparison between NRG calculations and
a new theoretical approach to the problem, known as the local moment approach (LMA), that
has recently been developed to treat the soft-gap Anderson model in [31] (denoted hereafter
as I); and from which results for the normal model, to which the approach was originally
applied [32], are recovered smoothly in the limit r → 0.

The dominant focus of the LMA is a treatment of single-particle dynamics, embodied
in the impurity single-particle spectrum D(ω)—on all energy scales and for any interaction
strength—although an essential element of it also permits the SC/LM transition, and associated
phase boundaries, to be addressed directly. The LMA is naturally non-perturbative, with both
the notion of local moments and the possibility of either a SC or LM state introduced explicitly
and self-consistently from the outset, as reflected in the adoption of an underlying two-self-
energy description for the impurity Green function. The approach itself is introduced briefly
in section 2 (full details being given in I); where in addition we emphasize the importance of a
U -independent pinning theorem for the single-particle spectrum of the SC phase at the Fermi
level, recently established on general grounds in [16]. We then outline a number of predictions
arising from the LMA that, in addition to single-particle spectra, can be tested directly against
NRG calculations. These include two regimes of one-parameter scaling for the SC/LM phase
boundaries; asymptotically exact results for the small-r behaviour of both the phase boundaries
and Kondo scale characteristic of the SC phase; and the prediction that, as for the normal r = 0
Anderson model, the so-called modified spectral functions F(ω) ∝ |ω|rD(ω) should exhibit
scaling behaviour upon approach to the SC → LM phase boundary—where the Kondo scale
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vanishes—resulting thereby in an r-dependent family of universal scaling spectra.
The NRG procedure employed is outlined in section 3, with particular emphasis on

how information on ground-state properties can be extracted, and how they depend upon
the parameters of the NRG calculations. Before proceeding we comment on the terminology
‘strong coupling’ which is used in two distinct senses. First to refer to large interaction
strengths,U , and second to refer to the strong-coupling (SC) state. The latter, now conventional
terminology has arisen from NRG studies (see e.g. [14, 15]) where it refers to the nature
of the underlying fixed point; and notwithstanding the fact that it is in general the LM
state which obtains in the large-U regime. In sections 4–6 we turn to detailed comparison
between NRG and LMA results. Phase boundaries, including their scaling characteristics and
asymptotic behaviour, are considered in section 4; comparison with previous NRG calculations
[14, 15] is also made. Single-particle spectra are considered in section 5, beginning with direct
comparison between NRG and LMA results for the ‘bare’ D(ω), for both SC and LM phases.
This is followed by consideration of the modified spectra F(ω), which have been argued
(see I and [16]) to provide a much more revealing description of single-particle dynamics
characteristic of the SC phase: in direct parallel to the normal Anderson model, the F(ω)—for
which the pinning theorem [16] is confirmed numerically—are seen to contain a generalized
Kondo resonance whose width is proportional to the Kondo scale ωK ≡ ωK(r), progressively
narrows as the SC → LM transition is approached, and vanishes at the transition itself.

The latter leads naturally to the issue of spectral scaling, to which we turn in section 6.
We begin by considering the normal Anderson model, for which the strong-coupling (large-U )
NRG scaling spectrum D ≡ D(ω/ωK) is first obtained, and compared to the LMA result
[32]. The quantitative agreement between the two is quite remarkable; and in qualitative
terms, while characteristic Fermi liquid behaviour is naturally recovered for |ω|/ωK � 1, the
scaling spectrum is clearly dominated by the Doniach–S̆unjić (DS) power-law tails [27, 28, 30]
indicative of an incipient orthogonality catastrophe. For r > 0, universal scaling of the SC
F(ω) is likewise found from NRG calculations. The r-dependent scaling spectra are extracted,
and indeed found to possess both the characteristic low-frequency (|ω|/ωK � 1) asymptotics
and generalized DS tails that the LMA predicts.

Our overall conclusion from this study is that the LMA provides a rather successful
description of the soft-gap and normal Anderson models, and appears to transcend many
limitations of extant theoretical approaches. Its specific predictions are well borne out
by benchmark NRG calculations; the level of agreement with which, both qualitative and
quantitative, provides encouraging impetus to further study and development of the basic
approach.

2. Background

In standard notation, and with the Fermi level taken as the origin of energy, the Hamiltonian
for the spin- 1

2 Anderson model is given by

Ĥ = Ĥhost + Ĥimpurity + Ĥhybridization

=
∑
k,σ

εkn̂kσ +
∑
σ

(εi + 1
2Un̂i−σ )n̂iσ +

∑
k,σ

Vik(c
†
iσ ckσ + c

†
kσ ciσ ) (2.1)

where εk is the host dispersion (with corresponding spectrum ρhost(ω)), Vik is the hybridization
matrix element and εi the impurity level; for the symmetric model considered here, εi = −U/2
with U the on-site Coulomb interaction. The host–impurity coupling is embodied succinctly
in the hybridization function �(ω) = ∑

k |Vik|2/(ω + iη sgn(ω) − εk) (where η = 0+), such
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that �(ω) = �R(ω) − i sgn(ω)�I(ω) with

�I(ω) = π
∑

k

|Vik|2δ(ω − εk). (2.2)

For the soft-gap model, �I(ω) takes the power-law form

�I(ω) = �0|ω|rθ(D − |ω|) (2.3)

with r > 0 and bandwidth D (θ(x) being the unit step function). Note from equation (2.2)
that the form equation (2.3) arises from a constant Vik and a soft-gap host spectrum ρhost(ω) =∑

k δ(ω − εk), although a separate specification of the {Vik} and host eigenvalues {εk} is not
in fact required to specify �I(ω). The corresponding real part �R(ω) follows by Hilbert
transformation, its low-ω behaviour being given by �R(ω) = −sgn(ω) tan( π2 r)�0|ω|r +
O(|ω|/D) for r < 1 (as here considered in practice). The problem is thus characterized
by three bare energy scales, namely U , D and (as convenient) either �1/(1−r)

0 or �0D
r ; one of

which may be used as the energy unit, resulting in two independent dimensionless parameters.
The normal Anderson model, r = 0, is recovered as a particular limit of equation (2.3).

Here, quenching of the impurity spin is ubiquitous and the system well known (see e.g. [2]) to be
a conventional Fermi liquid for allU � 0 and any�0 > 0 (�0 = 0 corresponding to the atomic
limit where the impurity/host trivially decouple). For r > 0 by contrast, two distinct possible
ground states are known to exist [9, 14, 15]—a doubly degenerate local moment (LM) state,
and a strong-coupling (SC) state in which the impurity spin is locally quenched and a Kondo
effect manifest—between which in general a non-trivial quantum phase transition occurs at a
critical coupling strength. This will be investigated in the following sections, employing both
the NRG and LMA. Details of the former will be given in section 3; first, we outline the local
moment approach and its predictions [31, 32] relevant to the present work.

2.1. Dynamics and the LMA

The LMA focuses explicitly on single-particle dynamics, embodied in the zero-temperature
impurity Green function G(ω) (↔G(t) = −i〈T {ciσ (t)c†

iσ }〉) and hence single-particle
spectrum D(ω) = −π−1 sgn (ω) ImG(ω); and G(ω) is usually expressed as

G(ω) = [
ω + iη sgn(ω) − �(ω) − �(ω)

]−1
(2.4)

which simply defines the conventional single self-energy �(ω)†. As far as dynamics are
concerned, our primary interest in this paper resides in the SC phase with its attendant low-
energy Kondo scale. In this regard we first note an important conservation upon the single-
particle spectrum at the Fermi level, ω = 0, hitherto established in [16] on general grounds:
namely, defining a modified spectral function F(ω) by

F(ω) = π�0
[
1 + tan2( π2 r)

] |ω|rD(ω) (2.5)

that

F(ω = 0) = 1 (2.6)

throughout the SC phase. For r = 0, this recovers as a particular case a well known result
for the normal impurity model, usually viewed as a consequence of the Friedel sum rule (see
e.g. [2]): that π�0D(ω = 0) = 1—the spectrum is always pinned at the Fermi level ω = 0.
Equation (2.6) generalizes this pinning condition to arbitrary r for a SC state and, as discussed
in [16], embodies the fact that many-body interactions have no influence in renormalizing the
low-ω behaviour of D(ω) in the SC phase: its ω → 0 asymptotic form D(ω) ∼ |ω|−r is

† A definition that excludes the trivial Hartree contribution, which cancels εi = −U/2.
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precisely that of the non-interacting limit, consistent with the view [15, 16, 31] that the r > 0
SC state constitutes a non-trivial but natural generalization of Fermi liquid physics. The extent
to which the pinning equation (2.6) is captured in practice should also provide a good test of
the accuracy of NRG calculations, as considered in section 5.

In seeking to describe single-particle dynamics for both SC and LM phases, the LMA
[31, 32] eschews direct calculation of the single self-energy �(ω), and instead employs a
two-self-energy description with G(ω) expressed formally as

G(ω) = 1
2

[
G↑(ω) + G↓(ω)

]
(2.7a)

where

Gσ(ω) = [
ω + iη sgn(ω) − �(ω) − �̃σ (ω)

]−1
(2.7b)

(and σ = ↑/↓ or +/−). The interaction self-energies �̃σ (ω) (= − �̃−σ (−ω) by particle–hole
symmetry) are separated as (see footnote above)

�̃σ (ω) = −σ

2
U |µ| + �σ(ω) (2.8)

into a purely static Fock contribution (with local moment |µ|) that alone would be retained at
the simple mean-field level of unrestricted Hartree–Fock (UHF), together with anω-dependent
contribution�σ(ω) containing the dynamics that, at low frequencies in particular, are naturally
central to the problem. There are several reasons for adopting a two-self-energy description.
First, it is a physically natural description of the doubly degenerate LM state, the self-consistent
possibility of which must be introduced explicitly from the outset if one seeks to devise a non-
perturbative approach that can simultaneously handle the possibility of both LM and SC states.
Second, it provides a tangible means of developing a many-body approach to the problem that
starts from, but successfully transcends the limitations of, the static mean-field description
(UHF). Finally, conventional perturbation theory (PT) in U about the non-interacting limit,
which underpins traditional diagrammatic approaches to the single self-energy�(ω), is at best
limited: for example the existence of a SC/LM transition at a finite interaction strength for
0 < r < 1

2 [9, 14, 15] attests to a finite radius of convergence for conventional PT, while for
1
2 < r < 1 there is evidence to suggest a vanishing radius of convergence for PT in U [16].

The LMA, described in detail in I and [32], has in practice two essential elements.

(i) It includes in the self-energies �σ(ω) a non-perturbative class of diagrams (figure 3 of I)
that embody dynamical coupling of single-particle excitations to low-energy transverse
spin fluctuations, and hence capture the spin-flip scattering essential to describe the Kondo,
or spin-fluctuation, regime. Other classes of diagrams, involving primarily charge and
longitudinal spin fluctuations, may also be included in the �σ(ω) (see e.g. figure 9 of
[32]); but retention of the dynamical spin-flip scattering processes is essential.

(ii) In describing the SC phase (and hence delineating the boundaries thereof ), the spectral
pinning equation (2.6) at the Fermi level ω = 0 precisely, is enforced as a self-consistency
condition; a necessary/sufficient condition for which is readily shown (section 5.1 of
I) to be that (Re�̃σ (ω = 0) ≡) �̃R

σ (ω = 0) = 0, i.e. �R
σ (ω = 0) = (σ/2)U |µ| from

Equation (2.8). But�σ(ω) depends both explicitly onU and parametrically on (σ/2)U |µ|
(since the bare propagators that enter �σ(ω) are of mean-field form and thus depend upon
the static mean-field self-energy −(σ/2)U |µ|). Hence, enforcement of theω = 0 spectral
pinning characteristic of the SC state is guaranteed by

�R
σ

(
ω = 0;U ; σ

2
U |µ|

)
= σ

2
U |µ|. (2.9)
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For a chosen r and U , equation (2.9) is a self-consistency equation for the local moment
|µ|; the limits of stability of solutions to which, upon increasing U , thus yield the SC/LM
phase boundary (which is thereby found, correctly, to be coterminus with that obtained upon
approach from the LM phase; see section 6 of I). Most importantly, as detailed in I, self-
consistent solution of equation (2.9) introduces naturally into the problem a low energy scale
that (obviously) has no counterpart at crude mean-field level: the Kondo, or spin-flip scale
ωm ≡ ωm(r), whose physical significance within the LMA is twofold. First, it corresponds
to the energy cost to flip the impurity spin (as manifest in a strong resonance centred upon
ω = ωm in the transverse spin polarization propagator [31, 32]). With increasing interaction
strength in the SC phase, ωm(r) diminishes progressively and vanishes as the SC/LM phase
boundary is approached; while ωm(r) = 0 throughout the LM phase—as expected physically,
since for a doubly degenerate LM state with finite weight on the impurity there is no energy
cost to flip a spin. Second, in the SC phase, ωm(r) > 0 sets the finite timescale (∼1/ωm)
for restoration of the locally broken symmetry inherent to the zeroth-order mean-field level
of description, as manifest for example in the fact that for ω/ωm � 1, �̃↑(ω) and �̃↓(ω)
coincide with each other (and hence with the conventional single self-energy �(ω)); while for
the LM phase by contrast, where ωm = 0, there is naturally no such symmetry restoration and
�̃↑(ω) �= �̃↓(ω) even as ω → 0.

The preceding comments are merely intended to provide a brief overview of the strategy
behind the LMA, and full details are given in I. We now highlight some predictions of the
approach that will be tested against NRG calculations in sections 4–6, beginning with the
SC/LM phase boundaries.

In qualitative terms, and for any U > 0, the LMA yields the existence solely of LM
states for all r > 1

2 . This agrees with extant NRG calculations [14, 15] (although we note
that for U = 0 precisely the ground state is known [16] to be SC for all 0 < r < 1; so for
1
2 < r < 1 there is a SC/LM transition ‘at’ U = 0 itself, a fact that underlies the breakdown
of conventional PT in U in this r-regime; see [16] and I). Moreover, for the normal Anderson
model r = 0, the LMA correctly yields a normal Fermi liquid for all U � 0 and �0 > 0
[32]—a well known fact reflecting the absence of a LM phase in this case, but one that is
by no means guaranteed a priori in an approximate theory. The SC/LM phase boundary is
thus confined in effect to 0 < r < 1

2 , and its r-dependence will in general depend upon the
two independent dimensionless parameters that, as mentioned above, characterize the model:
one of �0D

r/U or �1/(1−r)

0 /U , together with U/D. However, the LMA predicts two distinct
regimes of one-parameter scaling of the phase boundaries, according to whether U/2 � D

or �D—corresponding physically to an impurity level |εi | = 1
2U that lies respectively well

outside or within the host conduction band of width D: (a) for U/2 � D, the phase boundary
depends universally on �0D

r/U alone, and not upon U/D; while (b) for U/2 � D the
transition line depends solely on �0U

r/U = (�
1/(1−r)

0 /U)1−r . The latter regime is known to
exist from previous NRG studies [15]; the former will be investigated via the NRG in section 4.

The small-r behaviour of both the phase boundary, and the vanishing of the Kondo scale
ωm(r) as the transition is approached from the SC phase, are naturally important. These are
given respectively within the LMA by (section 6.1 of I)

(
�0λ

r

U

)
c

r→0∼ π

8
r (2.10)

and

ωm(r)
r→0∼ λ

[
1 − U

Uc(r)

]1/r

(2.11)
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where λ = min[D,U/2]. We believe the exponent of 1/r , and equation (2.10) for the phase
boundary, to be asymptotically exact as r → 0. The latter is seen by taking the limit r → 0 of
equation (2.11), using equation (2.10), to yield ωm(r = 0) = λ exp(−πU/8�0). This is the
strong-coupling (large-U ) Kondo scale for the normal Anderson model. The prefactor of λ is
merely an approximate high-energy cut-off, but the exponent of −πU/8�0 is exact, as known
from the Bethe ansatz solution [33] and poor man’s scaling (see e.g. [2]); and recovery of it
hinges on the asymptotic validity of equation (2.10) as r → 0. Equations (2.10), (2.11) will
likewise be compared to NRG calculations in section 4. Note further from equation (2.10) that
the condition for mapping the symmetric Anderson model onto the corresponding Kondo
model under a Schrieffer–Wolff transformation [34], namely �0λ

r/U � 1, is evidently
satisfied along the phase boundary line as r → 0; using equation (2.10) the critical Jc for
the Kondo model as r → 0 can thus be obtained and, as detailed in I, recovers precisely the
result obtained by Withoff and Fradkin [8] from poor man’s scaling.

One strength of the LMA is its ability to describe single-particle dynamics, which are
compared to NRG calculations in sections 5 and 6. The known low-ω spectral signatures
of the LM and SC phases, namely D(ω) ∼ |ω|r and |ω|−r respectively as ω → 0 [14],
are correctly recovered by the approach; and it gives excellent agreement with extant NRG
results for D(ω) [14] (see figure 15 of I). However, as shown in [16] and I, the most revealing
exposé of single-particle dynamics in the SC phase is evident not in D(ω) itself, but in the
modified spectral function F(ω) ∝ |ω|rD(ω) (equation (2.5)) wherein the unrenormalized
|ω|−r -divergence inD(ω) has been removed. In thus ‘exposing’ the low-frequency many-body
renormalization characteristic of the Kondo effect, the Kondo scale is now directly manifest
in F(ω): in addition to spectral pinning at the Fermi level ω = 0 (equation (2.6)), F(ω)

contains a generalized Kondo resonance with a width proportional to ωm(r), that narrows
upon progressive increase of U in the SC phase and vanishes at the SC/LM phase boundary;
see section 8 of I. This behaviour, characteristic of the SC phase for all r < 1

2 , is in obvious
parallel to that for the normal Anderson model, and is further support for the notion of the SC
phase as a ‘generalized Fermi liquid’. NRG results for F(ω) will be given in section 5.

Most significantly, since the width of the Kondo resonance in F(ω) vanishes as the
SC → LM transition is approached (U → Uc(r)−), the above comments suggest—and
the LMA indeed predicts (see section 8 of I)—that F(ω) should exhibit scaling behaviour as
the phase boundary is approached from the SC side: i.e. F(ω) should be a universal function of
ω/ωm(r) for any r where a SC state exists. An r-dependent family of universal scaling spectra
is thus expected to arise, encompassing as a specific case the well known scaling for the normal
Anderson model r = 0 as U → ∞ (≡Uc(r = 0); see equation (2.10)). This is considered in
section 6 where we first compare the NRG and LMA scaling spectra for the normal Anderson
model. Further, the LMA predicts the universal F(ω)s to exhibit characteristic r-dependent
low-frequency behaviour (for ω/ωm � 1), as well as Doniach–S̆unjić tails [27] that are a
reflection of the orthogonality catastrophe and represent a generalization of those known to
arise in the r = 0 Anderson model [28, 30]; this too is compared to NRG calculations in
section 6.

3. NRG approach

Detailed discussion of how the NRG can be applied to the soft-gap Anderson model can be
found in [9, 12–15]. Here we mention briefly only those aspects of the approach necessary
to understand how e.g. information on ground-state properties can be extracted, and how they
depend upon the parameters of the NRG calculations.

The NRG is based quite generally on a logarithmic discretization of the energy axis,
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i.e. one introduces a parameter " and divides the energy axis into intervals ["−(n+1), "−n] for
n = 0, 1, . . . ,∞ [35, 36]. With some further manipulations [35, 36] the original model may
be mapped onto a semi-infinite chain, which can then be solved iteratively by starting from
the impurity and successively adding chain sites. The coupling between two adjacent such
sites n and n + 1 vanishes as "−n/2 for large n, whence the low-energy states of the chain
with n + 1 sites are generally determined by a comparatively small number Ns of states close
to the ground state of the n-site system. In practice one retains only these Ns states from the
n-site chain to set up the Hilbert space for the (n + 1)-site chain, thus preventing the usual
exponential growth of the Hilbert space as n increases. Eventually, after nNRG sites have been
included in the calculation, addition of another site will not change significantly the spectrum
of many-particle excitations; the spectrum is very close to that of the fixed point, and the
calculation may be terminated.

An example of such a flow diagram for some of the lowest-lying energy levels as a function
of the chain length, n, is given in figure 1 for the soft-gap Anderson model with r = 0.4,
U/D = 10−3 and �0D

r/D = 0.0075; the parameters used for the NRG calculations are
" = 2 and Ns = 300. The states are labelled by the quantum numbers Q (which characterizes
the number of particles measured relative to one particle per site), and the total spin, S. As
mentioned above, the energy scale is reduced in each step by a factor "1/2. To allow for
a direct comparison of the energies for different chain lengths, it is thus convenient to plot
"n/2En instead of the eigenvalues En of the n-site chain directly. As is apparent from figure 1,
the properties of the system in this case do not change further for chain lengths nNRG > 120.
Without going into details here, one can show that the distribution of energy levels for n > 120
in figure 1 is characteristic of the SC phase of the model.

0 40 80 120
n

0

1

2

3

Λ
n/

2 E
n

Q=0, S=1/2
Q=1, S=0

Figure 1. NRG flow diagram for the lowest-lying energy levels for �0D
r/D = 0.0075. The

system flows to the SC fixed point.

If by contrast we choose instead a value of �0D
r/D = 0.006, we obtain the flow diagram

shown in figure 2. Here it is evident that the fixed-point level structure is entirely different
from the SC solution, and indeed this particular pattern is now characteristic of the LM phase
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Figure 2. Flow diagram for the lowest-lying energy levels for �0D
r/D = 0.006. The system

flows to the LM fixed point.

of the model. We can thus conclude, simply from inspection of the two flow diagrams, that the
critical (�0D

r/D)c separating the SC and LM phases of the soft-gap Anderson model for the
model parameters specified lies in the interval [0.006, 0.0075]. Performing a whole series of
such NRG calculations leads to figure 3 (illustrated for the first excited state with Q = 1 and
S = 0), and the conclusion that the critical �0D

r/D lies between 0.00670 and 0.00675. This
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Figure 3. Flow diagram for the first excited state with quantum numbers Q = 1 and S = 0, for
various values of �′

0 = �0D
r/D.
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method thus enables in principle a determination of the critical coupling to arbitrary precision.
Note further from figure 3 that, in the vicinity of the critical coupling, the approach to the SC
or LM value of "n/2En occurs at progressively higher values of n.

This corresponds to the vanishing of a low-energy scale as the transition is approached
from either side, the low-energy scale being proportional to the Kondo scale when coming
from the SC phase. A low-energy scale may be defined as ω∗ = "−n∗/2 with n∗ given by
|xn∗ − x∞| = 0.01, with xn = "n/2En. In the SC phase the low-energy scale can also be
determined via e.g. the width ωK of the Kondo resonance (see section 5), and the NRG results
show that ω∗ ∝ ωK (the two are not of course strictly equal, since a low-energy scale is
determined only up to a prefactor).

It is of course obvious that for any " > 1 the NRG constitutes an approximation to the
continuum system, but becomes exact in the limit " → 1. Performing this limit directly is
naturally not possible since one must simultaneously increase the number of retained states,
Ns, to infinity; but one can study the "- and Ns-dependences of the NRG results and perform
the limits " → 1, Ns → ∞ by extrapolation. As an example, figure 4 shows results for the
"-dependence of the critical (�0D

r/D)c for a fixed Ns = 300; for both r = 0.1 and r = 0.4,
and withU/D = 0.1. It is evident from figure 4 that the"-dependence is rather mild, although
increasing slightly as r → 1

2 . Similar study of the Ns-dependence also reveals a rather weak
variation that again does not depend significantly on r . From such considerations we conclude
that for practical purposes, a choice of " = 2 and Ns = 300 will in general be sufficient to
determine e.g. the SC/LM phase boundaries to good accuracy and with minimal numerical
effort. One should nonetheless keep in mind that due to the "-dependence the actual critical
coupling (�0D

r/D)c will always be a few per cent smaller, the deviation increasing mildly as
r → 1

2 .

1.0 1.5 2.0 2.5 3.0
Λ

0

0.05

0.1

0.15

0.2

∆ cl

r=0.1 (x10)
r=0.4

Figure 4. "-dependence of the critical �′
c = (�0D

r/D)c for U/D = 0.1 and r = 0.1 (circles)
and r = 0.4 (squares). The �′

c for r = 0.1 is multiplied by a factor of 10.

Finally, we remind the reader that the NRG also enables calculation of dynamical
properties such as the single-particle spectrum D(ω), as detailed in [14] and [37]; and results
for which will be given in sections 5 and 6.
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4. Phase boundaries

In discussing phase boundaries between SC and LM states, we consider first the caseU/D � 1
that has been the focus of previous NRG studies [14, 15]. Here the phase boundary for given
r depends solely on the ratio �0U

r/U , a result known to arise from application of poor man’s
scaling to the soft-gap Anderson model [9]. It may however be understood quite simply by
noting that U/D → 0 corresponds to the conventional limit of an infinite host bandwidth,
D → ∞ (which may be taken with impunity for r < 1; see e.g. I); in which limit the D-
scale drops out of the problem, and the model thus depends solely on the dimensionless ratio
Ũ = U/�

1/(1−r)

0 .
Phase boundaries correspond to a critical Ũc(r), an alternative but equivalent way of

displaying which is via (�0U
r/U)c = Ũ r−1

c (r).
The above behaviour for U/D � 1 has been observed in NRG calculations by Gonzalez-

Buxton and Ingersent (G-BI) [15], who find in practice excellent scaling of the phase boundary
for U/D = 0.2 and 0.02 (see figure 20 of [15], where the quantity ρ0Jc there plotted for
the symmetric model is (8/π)(�0λ

r/U)c with λ = U/2). As noted in I however, the
phase boundary (�0U

r/U)c obtained originally by Bulla, Pruschke and Hewson [14] for
U/D = 10−3 differs significantly from that found by G-BI (comparison between which
is given in figure 5). We have thus repeated a determination of the phase boundary for
U/D = 10−3 using the procedure outlined in section 3 (which is considerably more refined than
that employed hitherto in [14]). As shown in figure 5, good agreement with the G-BI results
is now found: the difference between the two sets of data is small, and readily attributable to
the choice of " = 2 and Ns = 300 in the present calculations, which (see section 3) will yield
a slight overestimate of (�0U

r/U)c (the G-BI results [15] having already been extrapolated
to the continuum limit).

0 0.1 0.2 0.3 0.4 0.5 0.6
r

0

0.5

1

2

∆ 0 U
r /U

SC

LM

Figure 5. For U/D � 1, comparison of NRG phase boundary (�0U
r/U)c versus r (solid

diamonds) with that obtained via the LMA (solid line). Previous NRG results from [15] (open
squares) and [14] (open diamonds) are also shown, together with the r → 0 Kondo asymptote of
πr/8 (dashed line).
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Figure 5 will be discussed further below, before which we consider the opposite limit
of U/D � 1. Here, in contrast to the case of U/D � 1, the LMA predicts (see
section 6.3 of I) that none of the bare scales U,D or �

1/(1−r)

0 drop out of the problem,
but that the phase boundary exhibits one-parameter scaling when expressed in terms of
�0D

r/U (=(U/�
1/(1−r)

0 )r−1(D/U)r). This too is physically understandable, since for
|εi | = U/2 � D where the impurity level lies well outside the host band, the impurity–
host coupling is controlled by the hybridization �I(D) = �0D

r which, together with U , sets
the natural energy scales upon which ratio the phase boundary thus depends. This is confirmed
by NRG calculations, as shown in figure 6. In figure 6(a) we show the critical (�0U

r/U)c

versus r for U/D = 103, 102, 10 and (as in figure 5) 10−3; expressed in this form, the phase
boundary curves depend strongly upon the chosen U/D. For the same U/D ratios, figure 6(b)
by contrast shows the critical (�0D

r/U)c versus r , from which the predicted one-parameter
scaling for U/D � 1 is seen clearly; in particular, the results for U/D = 102 and 103 are
essentially indistinguishable.

0 0.1 0.2 0.3 0.4 0.5
r

0

4

8

∆ 0 
D

r /U

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

∆ 0 
U

r /U

(a)

(b)

Figure 6. NRG phase boundaries for U/D = 103 (squares), 102 (circles), 10 (triangles) and
10−3 (diamonds). Expressed as (a) (�0U

r/U)c the curves are strongly dependent on U/D; but as
(b) (�0D

r/U)c, the predicted one-parameter scaling is evident for U/D � 1. Lines connecting
points are a guide to the eye only.

In figure 7, NRG results for (�0D
r/U)c versus r (with U/D = 103) are compared to

those arising from the LMA for U/D � 1; while for U/D � 1, figure 5 likewise shows
the corresponding LMA result for (�0D

r/U)c. In both figures 5 and 7 we also indicate the



The soft-gap Anderson model 4911

0 0.1 0.2 0.3 0.4 0.5 0.6
 r

0

0.5

1.0

1.5

∆ 0 
D

r /U

0 0.1 0.2 0.3
0

0.1

0.2

0.3

Figure 7. NRG phase boundary (�0D
r/U)c versus r for U/D = 103 (solid circles), compared to

that obtained via the LMA for U/D � 1 (solid line). Lines connecting NRG points are a guide to
the eye only. Inset: results on an expanded scale, including the Kondo asymptote of πr/8 (dashed
line).

predicted r → 0 asymptotic behaviour of the phase boundary that is symptomatic of the
Kondo limit, namely πr/8 (equation (2.10); behaviour that is indeed recovered from the NRG
calculations, regardless of whether U/D � 1 or � 1. In the latter case, the small-r behaviour
is reached in practice for r � 0.02 (figure 5); while for U/D � 1 figure 7 shows that the
critical �0D

r/U remains close to its Kondo asymptote of πr/8 over a wider r-range (up to
r ∼ 0.1), as one expects physically for U/D � 1 where charge fluctuations are relatively less
significant. Note however that, even for U/D → ∞, the phase boundaries of the soft-gap
Anderson and Kondo models coincide strictly only as r → 0: the condition for mapping the
former onto the latter via a Schrieffer–Wolff transformation—and hence the suppression of
charge fluctuations in the Anderson model—is �0λ

r/U � 1 (with λ = min[D,U/2]), and
from equation (2.10) is satisfied asymptotically on the phase boundary as r → 0. Charge
fluctuations in the Anderson model cannot therefore be neglected entirely even asU/D → ∞,
save for r → 0; as manifest in the fact (figure 7) that (�0D

r/U)c remains in general finite at
the SC/LM transition.

More broadly, figures 5 and 7 show the predicted LMA phase boundaries to be in very good
quantitative accord with the NRG results for r � 0.3 or so; although with further increasing r
the NRG boundaries increase more rapidly than their LMA counterparts. This brings us to the
issue of how the phase boundaries behave as r → 1

2− (for r > 1
2 , both the NRG and LMA yield

solely LM states for U > 0). Previous NRG studies for the soft-gap Anderson model [14, 15]
have suggested a divergent phase boundary as r → 1

2−, although it has been argued in I that the
data themselves do not reliably warrant such a conclusion. We have therefore reinvestigated
the matter more comprehensively, and conclude that the phase boundaries are indeed divergent
as r → 1

2−. An incipient divergence is evident in the NRG results for U/D = 10−3 shown
in figure 5, which has been extended up to r = 0.499; it is relatively weak, and fits well to
logarithmic behaviour, (�0U

r/U)c ∝ −ln( 1
2 − r). Perhaps the most compelling evidence is

however obtained by fixing r = 1
2 precisely, and (for the chosen U/D and with D = 1 as
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the energy unit) progressively increasing the hybridization �0: up to �0-values that are more
than two orders of magnitude in excess of the critical �0 for r = 0.499, only LM states are
observed and there is no hint of a SC state at r = 1

2 . Such behaviour is naturally not specific
to U/D = 10−3 (although note that in figure 7 for U/D = 103, the final r < 1

2 NRG point is
r = 0.49).

The above behaviour as r → 1
2− is in contrast to that found within the LMA, where

the phase boundary terminates at a finite value (although note that ironically a divergent
phase boundary as r → 1

2− arises at the simple static mean-field level; see e.g. figure 9
of I). This discrepancy is plausibly explained by noting that while charge fluctuations are
partially included in the present (naturally approximate) LMA, it deliberately focuses on and
successfully captures the strong-coupling physics of the Kondo/spin-fluctuation regime that is
asymptotically dominant for small r . It does not therefore do justice to the charge fluctuations
that, granted a divergent phase boundary, must become increasingly important as r → 1

2−.
Incorporation of such effects into the basic approach (beyond those already present) should
however be possible, and is currently under investigation. We also add that a finite critical
Jc(r) as r → 1

2− has hitherto been reported in an NRG study of the symmetric soft-gap Kondo
model [13]. This is now thought to be an artifact, however, and Jc(r) is likewise believed to
diverge as r → 1

2− [38].
Finally, we consider briefly the exponent for the vanishing of the Kondo scale as the SC/LM

transition is approached from the SC phase, as reflected in the behaviour of the low-energy
NRG scale ω∗(r) (section 3) whose critical behaviour may be expressed as

ω∗(r) ∝
(

1 − pc(r)

p

)x(r)

. (4.1)

Here, p = �0λ
r/U (with λ = min[D,U/2]), and the exponent x(r) is thus defined. The LMA

result for x(r) is x(r) ∝ 1/r as r → 0 (equation (2.11)) and, while this can be established
analytically only as r → 0, numerical analysis shows the exponent 1/r to hold generally
within the LMA (section 6.1 of I). NRG results for x(r) are given in table 1; and as r tends
to either 0 or 1

2 we estimate a numerical uncertainty of O(1) in the quoted values. (The data
shown refer specifically to U/D = 10, although we do not believe them to be dependent on
U/D: the same values are obtained to within numerical accuracy for U/D = 0.1.)

Table 1. RG results for the exponent x(r).

r 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.47

x(r) 19.6 10.8 7.6 6.2 5.43 5.14 5.2 5.85 8.55 12.2

From table 1 it is apparent that x(r) ∼ 1/r as r → 0 is indeed recovered. With increasing
r , however, x(r) falls off less rapidly than 1/r , reaches a minimum at r ∼ 0.3 and increases
again as r → 1

2 where we suspect it diverges. While we cannot offer an explanation for this
behaviour, save as r → 0, we do not doubt at least its qualitative accuracy; and in view of the
comments made above it is hardly surprising that the NRG and LMA exponents differ with
increasing r .

5. Single-particle dynamics

We begin with a brief overview of spectral characteristics in both SC and LM phases for a
representative r < 1

2 , and compare directly NRG and LMA determined spectra; r = 0.2
is chosen, together with a fixed ratio U/D = 0.1. Figure 8(a) shows NRG results for
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Figure 8. �1/(1−r)

0 D(ω) versus ω̃ = ω/�
1/(1−r)

0 . (a) NRG with fixed r = 0.2 and U/D = 0.1,

and (from outside to inside) for: Ũ = U/�
1/(1−r)

0 = 31.6 (LM), 19.0 (LM), 13.3 (SC) and 10.1
(SC); the critical Ũc = 13.7. (b) LMA spectra for the same parameters.

the single-particle spectrum versus ω̃ = ω/�
1/(1−r)

0 , for four reduced interaction strengths
Ũ = U/�

1/(1−r)

0 : Ũ = 31.6 (LM phase), 19.0 (LM), 13.3 (SC phase) and 10.1 (SC); the
SC/LM transition occurs at Ũc � 13.7. Corresponding spectra obtained from the LMA for the
same parameters are shown in figure 8(b).

With decreasing interaction strength in the LM phase the Hubbard satellites, centred on
ω̃ = ± 1

2 Ũ , naturally move to lower energies; and in addition a narrow low-energy feature
is seen to develop in the vicinity of the Fermi energy ω = 0. This becomes increasingly
pronounced as Ũ decreases toward the Ũc(r) at which the LM/SC transition occurs but, as
seen from figure 8, D(ω) vanishes as ω → 0 in the LM phase, with the asymptotic behaviour
D(ω) ∼ |ω|r (behaviour that is characteristic of the LM state for any r > 0). For Ũ < Ũc(r)

by contrast, the spectra exhibit the characteristic ω → 0 divergence D(ω) ∼ |ω|−r that is
symptomatic of the SC phase for any r < 1

2 . And with further decreasing interaction strength
in the SC phase the Hubbard satellites naturally become less distinct, and as Ũ → 0 are
subsumed into the central divergent resonance (see e.g. figure 11(c) of I).

As is evident from figure 8, agreement between the NRG and LMA spectra is rather good
(see also figure 15 of I); the principal difference being that the NRG Hubbard satellites in
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figure 8(a) are more diffuse than their LMA counterparts, and become increasingly so with
increasing Ũ . However, this is likely to be an artifact of the NRG calculations. The logarithmic
discretization employed in the NRG is designed to capture the low-energy physics; and on
higher-frequency scales appropriate to the Hubbard satellites, concomitant broadening of the
discrete and relatively sparse NRG poles is well known to produce spectral overbroadening.
We add moreover that the Hubbard satellites within the LMA already contain the effects of
additional many-body broadening beyond simple mean-field level, well known to exist for the
normal r = 0 Anderson model (see e.g. [20, 32]), and shown in section 7 of I to arise also
for the soft-gap model; and on these grounds too the diffuse character of the NRG Hubbard
satellites is unlikely to be physically correct.

As discussed in section 2 (see also I and [16]), the modified spectral function F(ω) =
π�0

[
1 + tan2( π2 r)

] |ω|rD(ω), which removes the |ω|−r -divergence that is symptomatic of
the SC state but unrenormalized by interaction effects, provides a much more acute probe of
single-particle dynamics in the SC phase. This is illustrated in figure 9, again for r = 0.2
and U/D = 0.1, where NRG results for F(ω) versus ω̃ = ω/�

1/(1−r)

0 are shown for reduced
interaction strengths: Ũ = 8.0 (SC), 10.1 (SC), 13.3 (SC) and 14.2 (LM).
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Figure 9. NRG spectra F(ω) = π�0[1 + tan2( π2 r)]|ω|rD(ω) versus ω̃ = ω/�
1/(1−r)

0 for fixed

r = 0.2 and U/D = 0.1, and (from inside to outside) for: Ũ = U/�
1/(1−r)

0 = 8.0 (SC), 10.1
(SC), 13.3 (SC) and 14.2 (LM). The SC/LM transition occurs at Ũc = 13.7.

Note first from figure 9 that the spectral sum rule F(ω = 0) = 1 (see section 2), that
generalizes to the SC state for arbitrary r < 1

2 [16] the pinning condition familiar for the r = 0
Anderson model, and encompasses the latter as a particular case, is well satisfied in the NRG
calculations; being obeyed typically to within an accuracy of 1–2% throughout the SC phase.

As evident from figure 9, and in direct parallel to the normal Anderson model, F(ω) in the
SC phase contains both the expected Hubbard satellites and a generalized Kondo resonance
that narrows progressively as Ũ is increased towards the SC/LM phase boundary at Ũc(r); in
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fact the SC F(ω) shown in figure 9 is qualitatively indistinguishable from that corresponding to
the r = 0 case on the ‘low-resolution’ scale shown (see e.g. figure 6 of [16]). For concreteness
in what follows we define the Kondo scale ωK ≡ ωK(r) as the half-width at half-height of
F(ω). The definition is of course somewhat arbitrary, the important point being that ωK(r)

should vanish as Ũ → Ũc(r)−, and within the NRG be proportional to the low-energy scale
ω∗(r) (with which it is hence in effect synonymous). Likewise, within the LMA, ωK(r) is
proportional to the spin-flip scale ωm(r) (section 2), and thus correspondingly synonymous.

In contrast to the normal Anderson model, the SC ωK(r) vanishes at a finite Ũc(r), the
effects of which are seen clearly in figure 9 where for Ũ > Ũc(r) (�13.7) in the LM phase
the Kondo resonance is absent, and as ω → 0 the LM F(ω) ∝ |ω|rD(ω) vanishes with
characteristic |ω|2r -behaviour. The Ũ = 13.3 (SC) and 14.2 (LM) examples included in
figure 9, corresponding to δ = |Ũ/Ũc(r) − 1| � 0.03, also exemplify spectral evolution as
the transition is approached from either side. They show, as argued within the LMA in I (see
figure 12 therein), that the SC and LM spectra on either side of the SC/LM transition are near
coincident on all energy scales save the lowest; and as δ → 0 the LM/SC spectra coincide to
arbitrarily low energies, in which sense the spectra evolve smoothly as the phase boundary is
approached.

6. Spectra: universal scaling

Since the Kondo scaleωK(r)—and hence the width of the Kondo resonance in F(ω)—vanishes
as the SC/LM transition is approached from the SC side, one anticipates spectral scaling, with an
r-dependent family of universal scaling spectra F ≡ F(ω/ωK(r)) obtained as Ũ → Ũc(r)−.
This is indeed predicted by the LMA (section 8 of I), and is now investigated via the NRG.

To this end we first consider the normal Anderson model, r = 0, where F(ω) =
π�0D(ω). Here, spectral scaling has hitherto been examined via the NRG for an asymmetric
model [28], in the one-hole sector ω < 0; and for the symmetric model by a QMC/maximum-
entropy study [30] at finite temperatures and for moderate interaction strengths Ũ = U/�0 �
3π . NRG results for the T = 0 symmetric Anderson model, F(ω) versus ω/ωK, are shown
in figures 10 and 11; they were obtained using " = 1.5 and Ns = 900, and universal scaling
in terms of ω/ωK is well established for Ũ � 5π . Figure 10 also compares the NRG scaling
spectrum to that obtained previously [32] within the LMA. The inset shows the LMA results
(figure 8 of [32]) arising when a particle–hole ladder sum is employed for the transverse
spin polarization propagator that enters the LMA self-energies �̃σ (ω); while the main figure
shows a simple modification detailed in [32] that merely eliminates the small spectral artifact
apparent in the former at ω/ωK ∼ 1.4, but otherwise produces no significant effect on the
scaling spectrum.

As seen from figure 10, the agreement between the LMA and NRG scaling spectra for
r = 0 is rather remarkable over the full frequency range. In addition to spectral pinning at
the Fermi level (ω = 0), the LMA successfully captures both the characteristic low-frequency
Fermi liquid behaviour D(ω) − D(0) ∼ (ω/ωK)

2 and, at larger ω/ωK, the Doniach–S̆unjić
(DS) law [27, 28, 30] indicative of the orthogonality catastrophe, wherebyD(ω) ∼ (|ω|/ωK)

−α

with α = 1 − 2(δ0/π)
2 and δ0 = π/2 the Fermi level phase shift; i.e. D(ω) ∼ (|ω|/ωK)

−1/2.
The existence and, indeed, dominance of the latter is apparent in figure 11, where a DS fit of
the form

F(ω) = a + b(|ω|/ωK)
− 1

2 (6.1)

is made to the NRG data (a fit to the LMA is essentially equivalent). As seen from the inset to
figure 11, DS behaviour persists out to ω/ωK = 30 (and naturally well beyond), no deviation
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Figure 10. For the normal Anderson model (r = 0), NRG scaling spectrum F(ω) = π�0D(ω)

versus ω/ωK (dashed line), compared to that obtained via the LMA (solid line) as discussed in
the text.
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Figure 11. For the r = 0 Anderson model, NRG F(ω) = π�0D(ω) versus ω/ωK including
fits to the DS tails (equation (6.1), dashed line) and to the Fermi liquid portion of the spectrum
(D(ω)−D(0) ∝ (ω/ωK)

2, dotted line). The inset shows the continued persistence of the DS fit.
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from the form equation (6.1) being apparent; while the main part of figure 11 shows clear DS
tail behaviour to extend down to ω/ωK � 0.5. By contrast, the low-frequency Fermi liquid
behaviour persists only up to ω/ωK � 0.2, where a rapid crossover to DS behaviour begins;
this too is seen in figure 11 where extrapolation of the Fermi liquid portion of the spectrum
(D(ω)−D(0) ∝ [ω/ωK]2) is made, producing a Lorentzian F(ω) that, save for ω/ωK � 0.2,
fails entirely to capture the scaling spectrum.

We turn now to r > 0, to consider scaling of the SC F(ω) as the SC/LM transition is
approached. Specific NRG results shown below are obtained for fixed U/D = 0.1 (as in
section 5); but we note that while the particular value of Ũc(r) (=(U/�

1/(1−r)

0 )c) at which the
transition occurs naturally depends upon U/D (see e.g. figure 6), variation of this parameter
produces no detectable influence on the scaling spectra themselves. For r = 0.2, figure 12
shows the resultant NRG F(ω) for Ũ = 8.0, 10.1 and 13.3 (as in figure 9); the critical
Ũc(r) � 13.7. The left-hand inset to the figure shows the central portion of the Kondo
resonance, versus ω̃ = ω/�

1/(1−r)

0 on an ‘absolute’ scale, to illustrate its rapid narrowing with
increasing Ũ , and ultimate vanishing as Ũ → Ũc−; the same behaviour is clearly evident
within the LMA in figure 18 (inset) of I. By contrast, the main part of figure 12 shows the
scaled F(ω) versus ω/ωK, from which universality is indeed apparent; the scaled spectra for
Ũ = 10.1 and 13.3 in particular are to all intents and purposes indistinguishable. Note also that
while Ũc(r) is finite, the Hubbard satellites are naturally projected out of the scaling spectrum
since ωK(r) vanishes at the phase boundary.

The LMA predicts two essential characteristics of the SC spectra (section 8 of I). First,
that for r > 0 the leading ω/ωK(r) → 0 behaviour of F(ω) − 1 (=F(ω) − F(0)) is
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Figure 12. For r = 0.2, NRG scaling spectrum F(ω) = π�0
[
1 + tan2( π2 r)

] |ω|rD(ω) versus

ω/ωK; with fixed U/D = 0.1 and for Ũ = U/�
1/(1−r)

0 = 8.0, 10.1 and 13.3 (the critical

Ũc(r) = 13.7). Left inset: corresponding data versus ω̃ = ω/�
1/(1−r)

0 , to illustrate the vanishing
of the Kondo scale as Ũ → Ũc(r)−. Right inset: DS fit to the scaling spectrum (dashed line),
equation (6.2) with tail exponent ν(r) = 1

2 − r .
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F(ω) − 1 ∝ [|ω|/ωK]γ (r) with γ (r) = 1 − r (and a proportionality constant that naturally
vanishes as r → 0, see section 8 of I). Cusp behaviour is indeed seen in the r = 0.2 NRG
results of figure 12, and numerical analysis confirms an exponent of γ (r) = 0.8 (asymptotic
behaviour that in practice sets in for |ω|/ωK � 0.01). Second, that the wings of the scaling
spectrum should contain generalized DS tails, of form F(ω) ∼ [|ω|/ωK(r)]−ν(r) with an
exponent ν(r) = 1

2 − r . This is likewise found in the NRG calculations, as seen from the
right-hand inset to figure 12 for r = 0.2, where a DS fit of form

F(ω) = a + b[|ω|/ωK(r)]
−(1/2−r) (6.2)

is made. The fit is excellent (extending down to |ω|/ωK ∼ 0.5) and, as for the r = 0 model,
the DS tails are again seen to dominate the scaling spectrum. The above behaviour is not of
course confined to r = 0.2. Figure 13(a) shows NRG results for F(ω) versus ω/ωK(r), for
r = 0.1, 0.2 and 0.3 (from bottom to top); the inset shows the same data on a reduced scale
|ω|/ωK(r) < 1. Corresponding LMA results are shown in figure 13(b) (obtained using the
particle–hole ladder sum in �̃σ (ω), and with no attempt to avoid the spectral anomaly apparent
around |ω|/ωK ∼ 1–2). In all these cases, for both NRG and LMA spectra, the cusp exponent
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Figure 13. Scaling curves F(ω) = π�0
[
1 + tan2( π2 r)

] |ω|rD(ω) versus ω/ωK(r) for (from
bottom to top) r = 0.1, 0.2 and 0.3; as obtained via (a) NRG, and (b) LMA. Insets: the same data
on a reduced scale; from outside to inside the curves correspond to r = 0.1, 0.2 and 0.3.
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is found to be γ (r) = 1 − r; and DS tails of form equation (6.2) again arise. We also add that
the DS exponent of ν(r) = 1

2 − r reflects the fact that we consider F(ω) ∝ |ω|rD(ω) which,
unlike D(ω) itself, is a universal function of ω/ωK(r) as the transition is approached from the
SC phase. However, [ωK(r)]rD(ω) ∝ (|ω|/ωK(r))

−rF(ω) does exhibit scaling, and we note
that its DS exponent is thus ν(r) + r = 1

2 —precisely as for the normal Anderson model, and
again symptomatic of the fact that the latter constitutes a particular case of more generic SC
behaviour.

In qualitative terms, both NRG and LMA results for the universal F(w) in figure 13
show narrowing of the central portion of the Kondo resonance with increasing r (insets to
figure 13); together with a relative ‘flattening’ (ν(r) = 1

2 − r) and increase in intensity of the
DS tails. Quantitatively, the agreement between NRG and LMA for F(ω) becomes poorer
with increasing r—not surprisingly in view of the discussion of the phase boundaries given in
section 4, and reflecting the fact that the specific LMA we have considered focuses on the spin-
fluctuation physics which is asymptotically dominant as r → 0. Explicit comparison between
NRG and LMA results for the universal F(ω) is made in figure 14 for r = 0.1; the most obvious
difference being the relative offset in the DS tails (each of which fits very well to the form
equation (6.2)), which increases with r (figure 13). This shows up in significant differences
between the NRG and LMA a-coefficients in equation (6.2); although the corresponding b-
coefficients are much closer, reflected in the fact that the DS tails in figure 14 are near parallel.
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Figure 14. Direct comparison of r = 0.1 scaling curves F(ω) = π�0
[
1 + tan2( π2 r)

] |ω|rD(ω)

versus ω/ωK: NRG (upper) and LMA (lower).

7. Summary

In this paper we have studied the symmetric soft-gap Anderson impurity model [9, 14–16, 31,
32]. The model exhibits a rich spectrum of physical behaviour on account of the underlying
quantum phase transition between strong-coupling and local moment states, and contains
the ‘normal’ Anderson model as a particular limiting case. Our primary aim has been to
make detailed comparison between two non-perturbative approaches: the NRG method, which
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provides essentially exact numerical results for the problem [14, 15], and a recently developed
many-body theory, the LMA [31, 32].

Agreement between the two approaches is in general found to be very good, both for static
properties such as the ground-state phase diagram, as well as for dynamical properties embodied
in zero-temperature single-particle excitation spectra. In particular, specific predictions arising
from the LMA [31] are found to be well borne out by NRG results. These include scaling
characteristics and asymptotic behaviour of the phase boundaries, Fermi level pinning of the
modified spectral functions throughout the SC phase, and universal scaling of single-particle
spectra upon approach to the SC → LM transition where the Kondo scale characteristic of the
SC phase vanishes. Differences between the two approaches arise only as r → 1

2 ; they may
be ascribed to an incomplete treatment of charge fluctuations in the specific LMA we have
considered in practice, which seeks primarily to capture the spin-flip physics that dominates
the regime of well developed local moments (whether in the SC or LM phases). Quantitative
agreement between NRG and LMA results is however remarkably good in general, the universal
scaling spectrum of the normal Anderson model (figure 10) providing a particular example.
The results obtained here provide in our view strong encouragement to further study of the
present—and related—quantum impurity models, via both the NRG and LMA, and including
consideration of finite-temperature spectral and hence transport properties.
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